Conveners
Student Day: Tutorial
- Adam Berlie (Science and Technology Facilities Council)
- Mark Telling (STFC)
Student Day: Student Talks I
- Adam Berlie (Science and Technology Facilities Council)
- Mark Telling (STFC)
Student Day: Student Talks II
- Adam Berlie (Science and Technology Facilities Council)
- Mark Telling (STFC)
Student Day: Student Talks III
- Adam Berlie (Science and Technology Facilities Council)
- Mark Telling (STFC)
ZnO is a wide direct bandgap (3.4 eV) semiconductor with promising electronic properties potentially useful in room temperature optoelectronic and spintronic devices. It can be used as a dilute magnetic semiconductor by tuning intrinsic or extrinsic magnetic defects while ZnO also demonstrates many unique surface effects such as a photogenerated metallic state. Imperative to utilizing these...
Compounds of the form $\rm{A}_2\rm{X}_2\rm{O}_7$ with the pyrochlore structures can exhibit classical or quantum spin ice behaviour if the crystal field environment of the $\rm{A}\rm{O}_8$ arrangement leads to the [111] easy-axis anisotropy. When Pr occupies the A-site, there is a low-lying electronic doublet and $\rm{Pr}_2\rm{X}_2\rm{O}_7$ compounds are found to be quantum spin ices$^1$....
Muons are the main component of cosmic ray particles on the earth, and most of the cosmic ray muons are injected into water or ice, which occupy more than 70% of the earth's surface. When negative muons ($\mu$$^-$) stop in H$_2$O, they are mainly trapped by oxygen nuclei and form muonic oxygen atoms O$\mu$$^-$, and about 15% of O$\mu$$^-$ atoms finally change to stable nitrogen isotopes...
In muon spin spectroscopy, the knowledge of muon implantation sites and hyperfine couplings is of importance to the analysis of the experimental data. Over the past decade there has been significant progress in calculating muon sites using first-principles methods such as density functional theory (DFT) [1,2]. However, the protocols required for muon calculations are both resource and task...
In a continuous beam muon facility positrons are detected by relatively large plastic scintillators without position sensitivity. An idea has been proposed to make these positron detectors multi-channel and able to track the positron trajectories. This will ultimately enable 2-dimensional magnetic imaging of the sample with the µSR technique. To attain this “muon microscope” idea, large...
Accelerated by the discovery of graphene, research on two-dimensional (2D) materials have attracted tremendous attention both from fundamental and applied sciences. Among the large number of 2D materials, chromium trihalides CrX3 (X = Cl, Br, I) van der Waals (vdW) magnets have also raised a large interest due to the existence of many magnetic subtleties that cannot be explained by their...
Superconductivity with a critical temperature $T_C$ $\sim$ 5.25 K was recently reported in the Cr-based superconductor Pr$_3$Cr$_{10-x}$N$_{11}$. The large upper critical field $H_{C2}$ $\sim$ 20 T, and the strong correlation between 3$d$ electrons derived from specific heat, suggest the unconventional superconductivity nature of this compound. We performed muon-spin rotation/relaxation...
Negative muons are often overlooked compared to their positive counterpart, partly due to the loss of around $\frac{5}{6}$ of the $\mu^{-}$ spin polarisation when a $\mu^{-}$ cascades down to the 1s muonic ground state after being captured by a nucleus. One needs to count for around 36 times as long to get statistics comparable to that of a $\mu^{+}$SR experiment. However, there has been a...
Silicon carbide (4H-SiC) is a wide-bandgap semiconductor with promising applications in high-power and high-frequency devices. An advantage of SiC is that it is the only compound semiconductor that has the ability to form native silicon dioxide (SiO$_2$). The performance of SiC-based devices relies heavily on interface effects. However, characterization of oxidation-induced defects - both in...
Today, the technology of magnetic resonance imaging (MRI) has been established and it is essential in the medical field. MRI is the method of making an in-situ image by utilizing nuclear magnetic resonance (NMR). However, the MRI technique has rarely been put to practical use for elements other than hydrogen because of the sensitivity issue. On the other hand, the technique of...
The interplay of superconductivity with nontrivial topological phases exhibit the fascinating topological superconductivity, which has attracted widespan attention from observing quasiparticle like Majorana fermions to its application in fault-tolerant quantum computation$^{1,2}$. It is proposed that the topological superconductivity can be realized in compounds having topological surface...
The Kondo effect was a longstanding theoretical puzzle, describing the scattering of conduction electrons in a metal due to dilute, localised d- or f -electron magnetic impurities and resulting in a characteristic minimum in electrical resistivity with temperature. Extended to a lattice of magnetic impurities, the Kondo effect likely explains the formation of so called heavy Fermion systems...