15th International Conference on Muon Spin Rotation, Relaxation and Resonance

Contribution ID: 174 Type: Poster

Development of Transient µSR at J-PARC

Thursday, 1 September 2022 18:40 (20 minutes)

To obtain one time-differential μ SR spectrum using a conventional technique, we must wait around 10^2 minutes. In the majority of μ SR experiments, the μ SR spectrum is recorded as a function of temperature. Thus, such a long recording time (t_{record}) has not been a serious problem, because the lead time (t_{read}) for stabilizing temperature requires typically 10-20 min, which is shorter than the recording time ($t_{lead} < t_{record}$). However, due to the developments of the high-intensity pulsed muon beam with a repetition of 25 Hz in J-PARC MUSE and the multi-detector counting system, the recent data recording time is very short compared with the time to stabilize the measurement condition $(t_{record} < t_{lead})$, which makes t_{lead} a significant bottleneck for the advanced μ SR measurements. In order to solve this problem, we are developing a novel data record and analysis technique to use a high-intensity muon beam more efficiently. In the novel technique named transient μ SR, the sample environment, such as temperature and magnetic field, is continuously changing during the μ SR measurements. Positron events in each muon pulse are recorded as multidimensional data, i.e., along with the number of pulses and the changing parameter. The whole data is then resorted as a function of the parameter. This transient μ SR technique also enables us to study a transient phenomenon that is now unavailable with the standard μ SR technique. It should be emphasized that the feasibility of this technique crucially depends on the intensity of the pulsed muon beam. We have also developed a new software based on ROOT to analyze the huge number of the μ SR spectrum within a reasonable amount of time. We will introduce the analysis software how to analyze the transient μ SR data and report the results obtained under dynamic sample environments.

Primary author: NISHIMURA, Shoichiro (KEK IMSS)

Co-authors: OKABE, Hirotaka (Tohoku Univ.); Prof. KADONO, Ryosuke (KEK IMSS); SUGIYAMA, Jun (CROSS Neutron Science and Technology Center); Dr HIRAISHI, Masatoshi (Ibaraki University); Prof. KODA, Akihiro (IMSS, KEK)

Presenter: NISHIMURA, Shoichiro (KEK IMSS)

Session Classification: Posters

Track Classification: New techniques