15th International Conference on Muon Spin Rotation, Relaxation and Resonance

Contribution ID: 319

Type: Poster

Negative muon spin rotation and relaxation on superconducting MgB₂

Thursday, 1 September 2022 18:40 (20 minutes)

Although μ^+ SR is widely used as a tool for studying a microscopic internal magnetic field in condensed matters over 40 years, the counterpart technique, i.e., μ^- SR is less common for such purpose mainly due to a low counting rate for reaching reliable statistics. However, the recent progress in the beam power and counting system overcame such problem. We therefore started a new μ^- SR project to measure a nuclear magnetic field in hydrogen storage materials and battery materials since 2018 [1].

In order to expand the μ^- SR work, we have attempted to measure the μ^- SR spectra on superconducting MgB₂ in ISIS to join the time reversal symmetry breaking business. This is because the past μ^+ SR work on MgB₂ [2] reported the dynamic change in a nuclear magnetic field even below $T_c = 39$ K due to muon diffusion, resulting in difficulty to know the variation of the nuclear magnetic field below T_c . From a μ^- SR viewpoint, Mg almost lacks nuclear magnetic moments (since the natural abundance of ²⁵Mg with I = 5/2 is 10%), and as a result, the μ^- s captured by Mg feel a nuclear magnetic field formed by surrounding B and could detect the change in it accompanied with the superconducting transition. Note that the natural abundance of ¹⁰B with I = 3 is 19.9% and that of ¹¹B with I = 3/2 is 80.1%. Thus, the μ^- captured by B should exhibits a fast decay due to its own nuclear magnetic moment, and the corresponding asymmetry will disappear.

[1] J. Sugiyama et al., Phys. Rev. Lett. **121**, 087202 (2018).

[2] Ch. Niedermayer et al., Phys. Rev. B 65, 094512 (2002).

Primary authors: SUGIYAMA, Jun (CROSS Neutron Science and Technology Center); FORSLUND, Ola Kenji (KTH Royal Institute of Technology); Ms NOCERINO, Elisabetta (KTH); Prof. SASSA, Yasmine (Chalmers University of Technology); Prof. MANSSON, Martin (KTH); Dr HILLIER, Adrian (STFC / UKRI); Dr ISHIDA, Katsuhiko (Riken)

Presenter: SUGIYAMA, Jun (CROSS Neutron Science and Technology Center)

Session Classification: Posters

Track Classification: Superconductivity