15th International Conference on Muon Spin Rotation, Relaxation and Resonance

Contribution ID: 143

Type: Oral

Is the Abrikosov's vortex-model still valid in nematic superconductors?

Thursday, 1 September 2022 12:40 (20 minutes)

Spontaneous rotational-symmetry breaking (RSB) in the amplitude of the superconducting gap is a necessary condition for "nematic" superconductivity. This was evidenced in the topological superconductor $Cu_xBi_2Se_3$ where, despite the threefold symmetry of its lattice, a twofold symmetry of electronic properties emerged from nuclear magnetic resonance¹, transport², and specific-heat³ measurements, when the applied magnetic field is rotated in the Se planes. This is also the case of CaSn₃ semimetal with the cubic AuCu₃-type structure: we prove a spontaneous RSB below Tc⁴ by magnetotransport- and muon-spectroscopy (μ SR) measurements. Particularly meaningful are the transverse-field (TF)- μ SR results in the mixed superconducting phase of CaSn₃, where the muon-depolarization rate depends on the magnetic field direction (here, applied along the [110] or [001] crystal directions). The absence of any additional muon depolarization along [110] suggests that an *unconventional vortex lattice* (VL) sets in. Conversely, in the [001] case, a VL encompassing at least 52% of the sample volume indicates the bulk nature of superconductivity.

Similarly, by scanning tunnelling spectroscopy in $Cu_x Bi_2 Se_3$, vortices exhibit an elliptical shape within stretched VLs for applied fields H orthogonal to the Se planes, whereas "no obvious in-plane vortices" could be observed for H parallel to the Se layers⁵.

Such evidence and our current experimental results on CaSn₃ seriously question the pertinence of the conventional Abrikosov model to the superconducting mixed state of nematic superconductors since multi-component order parameter superconductors may exhibit unusual vortex structures (fractional and/or non-axial vortices)⁶. Finally, the superfluid density in the (001) planes, extracted from TF- μ SR data, shows a fully gapped low-temperature behaviour, with $\Delta(0)=0.61(7)$ meV. Additional zero-field μ SR results indicate that the superconducting state is time-reversal invariant. This fact and the RSB in a fully-gapped superconductor suggest CaSn₃ as *nematic superconductor with an unconventional pairing state in a multidimensional representation*.

¹https://doi.org/10.1038/nphys3781

²https://doi.org/10.1038/s41467-019-14126-w

³https://doi.org/10.1038/nphys3907

⁴https://doi.org/10.1103/PhysRevB.105.094508

⁵https://doi.org/10.1103/PhysRevX.8.041024

⁶https://doi.org/10.1103/RevModPhys.63.239

Primary author: Dr LAMURA, Gianrico (CNR-SPIN)

Co-authors: Dr SHIROKA, Toni (Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland); Dr GENTILE, Paola (CNR-SPIN); Dr SIDDIQUEE, H. (Department of Physics, University of Central Florida); Dr MUNIR, R. (Department of Physics, University of Central Florida); Dr DISSANAYAKE, C. (Department of Physics, University of Central Florida); Dr NICKLE, Cameron (Department of Physics, University of Central Florida); Prof. DEL BARCO, Enrique (Department of Physics, University of Central Florida,); Dr BAINES, C. (Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland); Dr CAHEN, Sebastien (Institut

Jean Lamour, UMR CNRS 7198); Dr HÉROLD, Claire (Institut Jean Lamour, UMR 7198 CNRS); Dr NAKAJIMA, Yasuyuki (University of Central Florida)

Presenter: Dr LAMURA, Gianrico (CNR-SPIN)

Session Classification: Oral contributions

Track Classification: Superconductivity