Helium II second sound detection, heat source localisation (and more...) with transition edge sensors

Hernán Furci <u>hernan.furci@cern.ch</u>
Tobias Stegmaier, Torsten Koettig, Giovanna Vandoni

ICEC 2018 – Oxford, UK – September 2018

E-08: 162





# Context

SRF cavities non-contact thermal mapping Transition edge sensors



# Non contact SRF hotspots localization









$$\Delta T_{SS} \propto \frac{1}{\rho C u_{SS}} \frac{\partial q''}{\partial t}$$





# Transition Edge Sensors

Bolometers: tiny and fast temperature variations (≈1 mK, sub-ms range)

Gradual SC to NC transition of thin film alloy

Only sensitive in the transition range







# Transition Edge Sensors

Bolometers: tiny and fast temperature variations (≈1 mK, sub-ms range)

Gradual SC to NC transition of thin film alloy

Only sensitive in the transition range

Transition range 'tuned' with a bias current







# Transition Edge Sensors

Bolometers: tiny and fast temperature variations (≈1 mK, sub-ms range)

Gradual SC to NC transition of thin film alloy

Only sensitive in the transition range

Transition range 'tuned' with a bias current







# TES development at CERN

Fabrication, designs, characteristics



# TES fabrication process developed at CERN

# 2 Lift-off-based processes with different deposition method

| <b>Process description</b> | <b>Cross-section</b> |
|----------------------------|----------------------|
| Coating<br>positive resist |                      |
| LASER Writing<br>Direct    | 1                    |
| Developing                 |                      |
| Metal Deposition           |                      |
| Evaporation Sputtering     |                      |
| Lift-off with solvents     |                      |

The lift-off step takes around two days.



This process can be achieved in 4 hours.



# TES designs

#### Camera-like device



### Individual chips









# TES designs

Camera-like device





### Individual chips









# TES properties

- Au-Sn TES thin films are inhomogeneous
- Sn-rich features lay on a Sn-poorer matrix
- Transition behaviour extremely sensitive to Sn content
- SC behaviour ruled by inter-feature distance?
- The thermal history of the thin film is crucial

For more info, come and see POSTER M-09: 164





# Second sound experiments with TES

Second sound speed

Localisation of small heat sources

Second sound intensity distribution

Extended heat sources



# Second sound tests setup at the Cryolab

- Saturated superfluid helium (T = 1.6 2.1 K)
- TES are biased with a variable current regulated source
- SMD heaters imitate quench spot
- DAQ and heater control
   NI, up to 100 kHz, 24 bits in 3 V range







# Second sound tests setup at the Cryolab

- Saturated superfluid helium (T = 1.6 2.1 K)
- TES are biased with a variable current regulated source
- SMD heaters imitate quench spot
- DAQ and heater control
   NI, up to 100 kHz, 24 bits in 3 V range







# Second sound speed

- Relative position of heat sources and sensors are known
- TOF of second sound is determined from measurement
- Second sound velocity
  was measured to 2%
  agreement with values of
  19.9 m/s in literature
  (Donnelly, J. Phys. Chem. Ref.
  Data, Vol. 27, No. 6, 1998).











Test at 2 K, with 5 sensors and 9 heaters (3 x 6 mm<sup>2</sup>) Second sound speed taken from literature, TOF measured Application of trilateration algorithm (direct line of sight)





Test at 2 K, with 5 sensors and 9 heaters (3 x 6 mm<sup>2</sup>) Second sound speed taken from literature, TOF measured Application of trilateration algorithm (direct line of sight)









Test at 2 K, with 5 sensors and 9 heaters (3 x 6 mm<sup>2</sup>) Second sound speed taken from literature, TOF measured Application of trilateration algorithm (direct line of sight)









Test at 2 K, with 5 sensors and 9 heaters (3 x 6 mm²)
Second sound speed taken from literature, TOF measured
Application of trilateration algorithm (direct line of sight)
In more than 88 % of the cases, within 2 mm precision!
Uncertainty dominated by positioning and algorithm limitations (but not by the sensor)







Second sound intensity distribution







For more, come and see POSTERS E-06: 165 and 166

# Experiments with extended heat sources





Different pulse shape and amplitude depending on relative position to heater. Predicted by modelling. For more, come to see posters E-06: 165 and 166



# To summarize...

He-II Second sound detectors based on TES thermometry have been designed, prototyped and optimised.

- On-single-wafer Camera-like
- Individual chips

Alternative fabrication processes have been elaborated, tested and tuned.

- Evaporation Lift-off
- Sputtering Lift-off
- Sputtering IBE

TES were validated as a hotspot localisation tool through small scale experiments at the lab.

They also proved their capability as a tool for more fundamental studies.

Second sound physics

#### Further development is ongoing

- Improvement of thermal response.
- Characterisation and optimization of the fabrication process.
- Production.





#### Giovanna Vandoni

- BE-RF
- Senior Scientist
- SRF activities coordinator



#### Torsten Koettig

- TE-CRG-CI
- Senior Cryogenics Scientist
- Cryolab R&D Coordinator

Mentors



#### Hernán Furci

- BE-RF-SRF
- Senior Fellow
- Cryogenics Scientist
- R&D project responsible



#### **Tobias Stegmaier**

 Masters thesis on Cryogenic experimental techniques for SRF



#### Zsolt Kovàcs

 Bachelor in Material Science with thesis in TES thin films



#### Ece Özelci

 Master in Mechanical Engineering developing ultra-fast response TES through microfabrication

Undergraduate students



#### Project started in March 2016

# Acknowledgments

Cryolab

Technicians Collaboration

Infrastructure Helium

G. Rosaz, A. Mapelli, CMi of EPFL

Microfabrication techniques

Thin films expertise

A. Lunt, J. Busom Descarrega, F. Leaux

Microscopic analysis

SEM, SESI, ESB, EDX, FIB, etc.

A. Rijllart, E. Michel, P. Fernandez Lopez

DAQ advice

LabVIEW support



# Do not miss the sequel! Oral E-14:163

Superconducting cavities quench localisation by He-II second sound detection with

transition edge sensors

Hernán Furci hernan.furci@cern.ch

Giovanna Vandoni, Alick Macpherson

S. Barriere, A. Castilla, N. Shipman, K. Turaj,

M. Wartak, A. Zwozniak

ICEC 2018 – Oxford, UK – September 2018



