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INTRODUCTION
• In 2015 CryoTestLab engineers tested a 

large scale Integrated Refrigeration and 
Storage (IRAS) system for liquid hydrogen 
at NASA Kennedy Space Center
 125,000 liters of LH2

 Zero-loss tanker offloads, long duration zero 
boiloff (ZBO), liquefaction, densification with 
slush production

• IRAS = storage tank + internal heat 
exchanger + cryogenic refrigeration 
system
Control via direct addition and removal of 

thermal energy (heat) as opposed to addition 
and removal of mass

 Full control over the bulk fluid properties 
anywhere along the saturation curve
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Ground Operations Demonstration 
Unit for Liquid Hydrogen (GODU-LH2)



3INTRODUCTION
• GODU-LH2
 IRAS tank with custom-built internal 

tubular heat exchanger
 Linde Cryogenics LR1620 helium 

refrigerator (390 W or 850 W @ 20 K 
with and w/o LN2 precooling)

• 3x temperature rakes to map 
hydrogen temperature profile, 
20 total silicon diodes

• Redundant pressure transduces

• Successfully tested at 4 different 
fill levels: 33%, 46%, 67% & 100%

• Excellent data for anchoring 
analytical models!
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100%

67%

46%

33%

INNER TANK INSTRUMENTATION

Elevations

TT3 0.57 m

TT4 0.92 m

TT9 1.24 m

TT10 1.54 m

TT15 1.85 m

TT16 2.12 m

TT20 2.72 m
Accuracies 
Diodes: ±0.5 K from 450 K to 25 K, and ±0.1 K from 25 K to 1.5 K
Transducers: ±6.89 kPa (1% of full scale)
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TRANSIENT DATA SET

• Particularly interested in 
predicting the hydrogen 
temperature and pressure 
trends during transient periods

• Densification test data at 
three different fill levels was 
used to anchor analysis
Closed tank (no mass exchange)
Depressurization and temperature 

drop as heat is removed
 Specific regions chosen for 

consistent and uninterrupted 
refrigerator operation



6TRANSIENT MODELS
• Two different models were developed, based on 

two different high level assumptions

1. The entire tank, both liquid and 
vapor, was fully saturated
throughout the test
 Simpler scheme, first one developed

 Hydrogen properties could be 
defined by just one parameter

 Temperature and pressure of the 
liquid and vapor would be equal

2. The bulk liquid was subcooled, with a 
finite layer of saturated liquid 
separating it from the saturated vapor
 Evolved from saturated model at 100%    

fill level

 Saturated layer suppressed heat transfer, 
slowing depressurization rate

 Refrigerator lift cooled the bulk liquid 
below the boiling point → heat transfer 
through the layer

 Entire HX was submergedUseful convergence parameter



7TRANSIENT MODELS
Model Similarities
 Lumped node, forward 

stepping in time

 Constructed in Excel, 
utilizing Visual Basic & 
RefProp v8

 Any tank volume, 
geometry, or stored fluid

 Constant and variable 
GHe inlet properties

 All lift took place in the 
liquid region

 GHe outlet temp from HX 
equaled the LH2 temp

 15 minute time increments

 Heat leaks constant

Saturated Model Subcooled Model
Q̇VJ,supply →  from different analysis (36 W)
Q̇HL,vap & liq →  from boiloff calorimetry of IRAS tank  

(function of fill level)



8SUBCOOLED MODEL DETAILS
• Assumed pure solid conduction through the 

saturated liquid layer

• ΔT across the layer, but constant nodal 
temperatures for subcooled LH2 & vapor

How is LSL determined?
• LSL estimated by equating heat transfer into 

the vapor and through the layer  during steady 

state →  Q̇SL = Q̇HL,vap = λSLALV
LSL

Tvap − Tliq

 100% fill level ZBO-PC data used 

 ALV estimated from tank geometry and 
liquid level (ALV ≈ 45.5 m2, assumed 
constant)

 LSL ≈ 35 mm (assumed constant)
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SATURATED MODEL RESULTS

• Good prediction at 46% full for variable GHe properties!

• Constant GHe properties is probably a bad assumption

• Tank not saturated at 100% full               Subcooled model
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SUBCOOLED MODEL RESULTS
• Only variable GHe

properties shown
• Much better prediction 

of both depressurization 
& temperature drop!
 Avg. ΔP between data 

and model = -0.06 kPa

 Absolute temperature    
error = 0.03%

• Model also run at 67% full 
 Better accuracy than 

saturated model, but still 
less than other fill levels

100% Fill Level



11DISCUSSION & TAKE-AWAYS
• Results appear to suggest that the tank was fully saturated at lower fill 

levels, but deviated as the liquid level increased  →  function of the unique 
GODU-LH2 system, or more fundamental?
 Is it, or can it be affected by heat exchanger design, refrigerant flow path, tank 

geometry, fluid species, etc?

• Both models closely predicted the transient data, but was dependent on 
fill level  →  is a generalized “universal” scheme possible?

• Approaches seem to be applicable to any scale IRAS system, but some 
information is required a priori  →  heat leak estimations, refrigerator 
performance numbers, etc.

• Good basis for future examinations, but more experimental testing and 
analytical study is necessary!
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THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

Storm clouds over GODU-LH2 test site
June 2016
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